Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Tendon stromal cells isolated from patients with chronic shoulder rotator cuff tendon tears have dysregulated resolution responses. Current therapies do not address the biological processes concerned with persistent tendon inflammation; therefore, new therapeutic approaches that target tendon stromal cells are required. We examined whether two specialized proresolving mediators (SPMs), lipoxin B4 (LXB4) and resolvin E1 (RvE1), modulate the bioactive lipid mediator profiles of IL-1β-stimulated tendon cells derived from patients with shoulder tendon tears and healthy volunteers. We also examined whether LXB4 or RvE1 treatments moderated the proinflammatory phenotype of tendon tear stromal cells. Incubation of IL-1β-treated patient-derived tendon cells in LXB4 or RvE1 up-regulated concentrations of SPMs. RvE1 treatment of diseased tendon stromal cells increased 15-epi-LXB4 and regulated postaglandin F2α. LXB4 or RvE1 also induced expression of the SPM biosynthetic enzymes 12-lipoxygenase and 15-lipoxygenase. RvE1 treatment up-regulated the proresolving receptor human resolvin E1 compared with vehicle-treated cells. Incubation in LXB4 or RvE1 moderated the proinflammatory phenotype of patient-derived tendon tear cells, regulating markers of tendon inflammation, including podoplanin, CD90, phosphorylated signal transducer and activator of transcription 1, and IL-6. LXB4 and RvE1 counterregulate inflammatory processes in tendon stromal cells, supporting the role of these molecules as potential therapeutics to resolve tendon inflammation.

Original publication

DOI

10.1016/j.ajpath.2019.07.011

Type

Journal article

Journal

Am j pathol

Publication Date

11/2019

Volume

189

Pages

2258 - 2268

Keywords

Aged, Anti-Inflammatory Agents, Cells, Cultured, Eicosapentaenoic Acid, Female, Humans, Inflammation, Inflammation Mediators, Lacerations, Lipoxins, Male, Middle Aged, Shoulder, Shoulder Injuries, Shoulder Joint, Stromal Cells, Tendon Injuries, Tendons