Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Bisphosphonates are synthetic pyrophosphate analogues and are therapeutic inhibitors of bone resorption, although their exact mechanisms of action are unclear. Some bisphosphonates can be metabolised into non-hydrolysable ATP analogues by Dictyostelium discoideum amoebae, in a back-reaction catalysed by several Class II aminoacyl-tRNA synthetases. We have found that the same enzymes in cell-free extracts of several human cell lines are also capable of metabolising in vitro the same bisphosphonates that are metabolised by Dictyostelium. These results indicate that human cells, following drug internalisation, should be capable of metabolising certain bisphosphonates. The toxic effects of these bisphosphonates towards bone-resorbing osteoclasts may therefore be due to accumulation of non-hydrolysable ATP analogues or inhibition of aminoacyl-tRNA synthetase enzymes.

Original publication

DOI

10.1006/bbrc.1996.1113

Type

Journal article

Journal

Biochem biophys res commun

Publication Date

25/07/1996

Volume

224

Pages

863 - 869

Keywords

Adenine Nucleotides, Amino Acyl-tRNA Synthetases, Cell Extracts, Cell-Free System, Diphosphonates, Enzyme Inhibitors, Humans, Tumor Cells, Cultured