Modulation of human chondrocyte metabolism by recombinant human interferon gamma: in-vitro effects on basal and IL-1-stimulated proteinase production, cartilage degradation and DNA synthesis.
Andrews HJ., Bunning RA., Dinarello CA., Russell RG.
Human articular chondrocytes in monolayer culture and fragments of human articular cartilage were treated with recombinant human interferon gamma (IFN-gamma) both alone and in combination with interleukin 1 (IL-1). IFN-gamma alone inhibits metalloproteinase production, as measured in the caseinase assay, and decreases glycosaminoglycan release from cartilage fragments in culture. The synthesis of DNA, as measured by [3H]thymidine incorporation, is stimulated by IFN-gamma. Similar effects are seen in the presence of IL-1. Thus, IFN-gamma opposes the stimulatory effect of IL-1 on caseinase production and decreases IL-1-stimulated cartilage degradation, as measured by glycosaminoglycan release. In contrast, IFN-gamma has no effect on IL-1-stimulated prostaglandin production, and acts synergistically with IL-1 to cause a large stimulation of DNA synthesis. These results show that IFN-gamma has a number of effects on articular chondrocytes in-vitro and suggest a possible role for IFN-gamma in limiting cartilage degradation in inflammatory joint conditions.