Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human articular chondrocytes in culture produced large amounts of specific mammalian collagenase, gelatinase and proteoglycanase when exposed to dialysed supernatant medium derived from cultured human blood mononuclear cells (mononuclear cell factor) or to conditioned medium, partially purified by fractionation with ammonium sulphate (60-90% fraction), from cultures of human synovial tissue (synovial factor). Human chondrocytes and synovial cells also released into culture medium an inhibitor of collagenase of apparent molecular weight about 30 000, which appeared to be similar to the tissue inhibitor of metalloproteinases synthesised by tissues in culture. The amounts of free collagenase inhibitor were reduced in culture media from chondrocytes or synovial cells exposed to mononuclear cell factor or synovial factor. While retinol inhibited the production of collagenase brought about by mononuclear cell factor or synovial factor, it restored the levels of inhibitor, which were reduced in the presence of mononuclear cell factor or synovial factor. Dexamethasone markedly reduced the production of collagenase by synovial cells, while only partially inhibiting factor-stimulated collagenase production by chondrocytes. Addition of puromycin as an inhibitor of protein synthesis reduced the amounts of both collagenase and inhibitor to control or undetectable levels.

Original publication




Journal article


Biochim biophys acta

Publication Date





129 - 139


Cartilage, Articular, Cells, Cultured, Dexamethasone, Gelatinases, Humans, Metalloendopeptidases, Microbial Collagenase, Molecular Weight, Monocytes, Pepsin A, Protease Inhibitors, Synovial Membrane, Tissue Extracts, Vitamin A