Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Vertebral fractures due to osteoporosis are a common skeletal disorder affecting the mobility of the patients, although little is known about the relationship between spinal kinematics and osteoporotic fracture. The purpose of this study was to characterize the motions of the thoracolumbar spine affected by osteoporotic vertebral fracture at level T12 and compare the results with those of non-fracture osteoporosis subjects. We examined the continuous segmental kinematics of the vertebrae, and describe the segmental motion of the spine when a fracture at T12 is present. Fluoroscopy sequences of the thoracolumbar spines during sagittal and lateral flexion were collected from 16 subjects with osteoporosis of their spine (6 with vertebral fractures at T12, 10 without a fracture). Vertebrae T10-L2 in each frame of the sequences were landmarked. Kinematic parameters were calculated based on the landmarks and motion graphs were constructed. Compared to the control subjects who did not have a fracture, fracture subjects had a more asymmetric lateral range of motion (RoM) and required a longer time to complete certain phases of the motion cycle which are parameterized as lateral flexion ratio and percentage of motion cycle, respectively. Prolonged deflection was more frequently found from the fracture group. Characterizing the motions of the fractured vertebra together with its neighboring vertebrae with these kinematic parameters is useful in quantifying the dysfunction and may be a valuable aid to tracking progress of treatment.

Original publication




Journal article


Med eng phys

Publication Date





346 - 355


Aged, Algorithms, Biomechanical Phenomena, Biophysics, Equipment Design, Female, Fluoroscopy, Humans, Motion, Osteoporosis, Reproducibility of Results, Spine, Thoracic Vertebrae, X-Rays