Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Osteoblast-like cells possess Na-dependent transporters which accumulate orthophosphate (Pi) from the extracellular medium. This may be important in bone formation. Here we describe parallel measurements of Pi uptake and cellular [Pi] in such cells from the rat (UMR 106-01 and UMR 106-06) and human (OB), and in non-osteoblastic human fibroblasts (Detroit 532 (DET)). In UMR 106-01, cellular [Pi] was weakly dependent on extracellular [Pi] and higher than expected from passive transport alone. [32Pi]-uptake was inhibited by Na deprivation, but paradoxically increased on K deprivation. With Na, 87 per cent of cellular 32P was found in organic phosphorus pools after only 5 min. Na deprivation also decreased cellular [Pi], in both UMR 106-01 and DET, but the decrease was smaller than that in [32Pi]-uptake. Ouabain decreased [32Pi]-uptake and cellular [Pi] in DET, but not in UMR 106-01. Regulation of cellular [Pi] is therefore at least partly dependent on Na/Pi co-transport, but this does not seem to be an exclusive property of osteoblasts.

Type

Journal article

Journal

Cell biochemistry and function

Publication Date

03/1993

Volume

11

Pages

13 - 23

Addresses

Department of Human Metabolism and Clinical Biochemistry, Medical School, Sheffield, U.K.

Keywords

Tumor Cells, Cultured, Fibroblasts, Osteoblasts, Animals, Humans, Rats, Phosphates, Potassium, Sodium, Ouabain, Biological Transport, Sodium-Potassium-Exchanging ATPase