Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Several studies have highlighted the interplay between metabolism, immunity and inflammation. Both tissue resident and infiltrating immune cells play a major role in the inflammatory process of rheumatoid arthritis (RA) via the production of cytokines, adipo-cytokines and metabolic intermediates. These functions are metabolically demanding and require the most efficient use of bioenergetic pathways. The synovial membrane is the primary site of inflammation in RA and exhibits distinctive histological patterns characterized by different metabolism, prognosis and response to treatment. In the RA synovium, the high energy demand by stromal and infiltrating immune cells, causes the accumulation of metabolites, and adipo-cytokines, which carry out signaling functions, as well as activating transcription factors which act as metabolic sensors. These events drive immune and joint-resident cells to acquire pro-inflammatory effector functions which in turn perpetuate chronic inflammation. Whether metabolic changes are a consequence of the disease or one of the causes of RA pathogenesis is still under investigation. This review covers our current knowledge of cell metabolism in RA. Understanding the intricate interactions between metabolic pathways and the inflammatory and immune responses will provide more awareness of the mechanisms underlying RA pathogenesis and will identify novel therapeutic options to treat this disease.

Original publication

DOI

10.3389/fphys.2020.00347

Type

Journal article

Journal

Front physiol

Publication Date

2020

Volume

11

Keywords

immunity, immunometabolism, mediators of inflammation, metabolism, rheumatoid arthritis