Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Docosahexaenoic acid (DHA, 22:6n-3) and oleic acid (18:1n-9) can alter the DNA methylation of individual CpG loci in vivo and in vitro, although the targeting mechanism is unknown. We tested the hypothesis that the targeting of altered methylation is associated with putative transcription factor response elements (pTREs) proximal to modified loci. Jurkat cells were treated with 22:6n-3 or 18:1n-9 (both 15 μM) for eight days and DNA methylation measured using the MethylationEPIC 850K array. 1596 CpG loci were altered significantly (508 hypermethylated) by 22:6n-3 and 563 CpG loci (294 hypermethylated) by 18:1n-9. 78 loci were modified by both fatty acids. Induced differential methylation was not modified by the PPARα antagonist GW6471. DNA sequences proximal to differentially methylated CpG loci were enriched in zinc-finger pTREs. These findings suggest that zinc-finger-containing transcription factors may be involved in targeting altered DNA methylation modifying processes induced by fatty acids to individual CpG loci.

Original publication

DOI

10.1016/j.plefa.2020.102128

Type

Journal article

Journal

Prostaglandins leukot essent fatty acids

Publication Date

07/2020

Volume

158

Keywords

DNA methylome, Docosahexaenoic acid, Jurkat cells, Oleic acid, PPARα, Response element