Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A combination of ultrahigh-speed optical imaging (5 × 106 frames/s), B-mode ultrasound and passive cavitation detection was used to study the vaporization process and determine both the acoustic droplet vaporization (ADV) and inertial cavitation (IC) thresholds of phospholipid-coated perfluorobutane nanodroplets (PFB NDs, diameter = 237 ± 16 nm). PFB NDs have not previously been studied with ultrahigh-speed imaging and were observed to form individual microbubbles (1-10 μm) within two to three cycles and subsequently larger bubble clusters (10-50 μm). The ADV and IC thresholds did not statistically significantly differ and decreased with increasing pulse length (20-20,000 cycles), pulse repetition frequency (1-100 Hz), concentration (108-1010 NDs/mL), temperature (20°C-45°C) and decreasing frequency (1.5-0.5 MHz). Overall, the results indicate that at frequencies of 0.5, 1.0 and 1.5 MHz, PFB NDs can be vaporized at moderate peak negative pressures (<2.0 MPa), pulse lengths and pulse repetition frequencies. This finding is encouraging for the use of PFB NDs as cavitation agents, as these conditions are comparable to those required to achieve therapeutic effects with microbubbles, unlike those reported for higher-boiling-point NDs. The differences between the optically and acoustically determined ADV thresholds, however, suggest that application-specific thresholds should be defined according to the biological/therapeutic effect of interest.

Original publication

DOI

10.1016/j.ultrasmedbio.2021.02.019

Type

Journal article

Journal

Ultrasound med biol

Publication Date

07/2021

Volume

47

Pages

1826 - 1843

Keywords

Acoustic droplet vaporization, Cavitation, High-intensity focused ultrasound, High-speed imaging, Nanodroplets, Perfluorobutane, Threshold, Acoustics, Fluorocarbons, Nanoparticles, Optical Imaging, Phospholipids, Volatilization