Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Physical activity (PA) is important to general health and knee osteoarthritis (OA). Excessive workplace PA is an established risk factor for knee OA however, appropriate methods of measurement are unclear. There is a need to examine and assess the utility of new methods of measuring workplace PA and estimating knee load prior to application to large-scale, knee OA cohorts. Our aims, therefore, were to monitor workplace PA and estimate lower-limb loading across different occupations in health participants. METHODS: Twenty-four healthy adults, currently working full-time in a single occupation (≥ 35 h/week) and free of musculoskeletal disease, comorbidity and had no history of lower-limb injury/surgery (past 12-months) were recruited across New South Wales (Australia). A convenience sample was recruited with occupations assigned to levels of workload; sedentary, light manual and heavy manual. Metrics of workplace PA including tasks performed (i.e., sitting), step-count and lower-limb loading were monitored over 10 working days using a daily survey, smartwatch, and a smartphone. RESULTS: Participants of light manual occupations had the greatest between-person variations in mean lower-limb load (from 2 to 59 kg*m/s3). Lower-limb load for most participants of the light manual group was similar to a single participant in heavy manual work (30 kg*m/s3) and was at least three times greater than the sedentary group (2 kg*m/s3). The trends of workplace PA over working hours were largely consistent, per individual, but rare events of extreme loads were observed across all participants (up to 760 kg*m/s3). CONCLUSIONS: There are large interpersonal variations in metrics of workplace PA, particularly among light and heavy manual occupations. Our estimates of lower-limb loading were largely consistent with pre-conceived levels of physical demand. We present a new approach to monitoring PA and estimating lower-limb loading, which could be applied to future occupational studies of knee OA.

Original publication

DOI

10.1186/s12891-021-04409-z

Type

Journal article

Journal

Bmc musculoskelet disord

Publication Date

18/06/2021

Volume

22

Keywords

Fitbit, Load-rate, Occupation, Physical activity (PA), Smartphone, Adult, Australia, Exercise, Humans, New South Wales, Occupations, Workplace