Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Exposure to axial unloading induces adaptations in paraspinal muscles, as shown after spaceflights. This study investigated whether daily exposure to artificial gravity (AG) mitigated lumbar spine flattening and muscle atrophy associated with 60-day head-down tilt (HDT) bed rest (Earth-based space analogue). Twenty-four healthy individuals participated in the study: Eight received 30 minutes continuous AG; eight received 6x5 minutes AG, interspersed with rest periods; eight received no AG exposure (control group). Magnetic Resonance Imaging (MRI) of the lumbopelvic region was conducted at baseline (BDC) and at day 59 of HDT (HDT59). T1-weighted images were used to assess morphology of the lumbar spine (spinal length, intervertebral disc angles, disc area) and volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 vertebral levels. A chemical shift-based 2-point lipid/water Dixon sequence was used to evaluate muscle composition. Results showed that: spinal length and disc area increased (P<0.05); intervertebral disc angles (P<0.05) and muscle volumes of LM, LES, and QL reduced (P<0.01); and fat/water ratio for the LM and LES muscles increased (P<0.01) after HDT59 in all groups. Neither of the AG protocols mitigated the lumbar spinal deconditioning induced by HDT bed rest. The increase in lipid/water ratio in LM and LES muscles indicates an increased relative intramuscular lipid concentration. Altered muscle composition in atrophied muscles may impair lumbar spine function after body unloading, which could increase injury risk to vulnerable soft tissues. This relationship needs further investigation.

Original publication

DOI

10.1152/japplphysiol.00990.2020

Type

Journal article

Journal

J appl physiol (1985)

Publication Date

03/06/2021

Keywords

Short-arm centrifugation, immobilization, magnetic resonance imaging, paraspinal muscles