Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

CD4+ T cells in the rat can be divided into two nonoverlapping subsets by their reactivity with the mAb MRC OX-22, which binds some of the high molecular weight forms of the CD45 antigen. The lineage relationship between subsets of CD4+ T cells expression different forms of CD45 has been a controversial issue for some time. Experiments described in this paper address this question using in vivo assays of T cell reactivity. Analysis of primary antibody responses in vivo show that it is MRC OX-22+ CD4+ T cells that are active in these assays, whereas antigen-primed T cells that provide helper activity for secondary antibody responses in vivo have the MRC OX-22- CD4+ phenotype. It is demonstrated that these memory T cells derive from MRC OX-22+ CD4+ T cell precursors and not from a putative separate lineage. It is concluded that with respect to the provision of help for B cells, MRC OX-22+ CD4+ T cells are precursors of memory cells with the phenotype MRC OX-22- CD4+.

Type

Journal article

Journal

J Exp Med

Publication Date

01/03/1989

Volume

169

Pages

653 - 662

Keywords

Animals, Antibodies, Antibodies, Monoclonal, Antigens, Differentiation, T-Lymphocyte, B-Lymphocytes, Dinitrophenols, Immunization, Immunologic Memory, Lymphocyte Activation, Ovalbumin, Phenotype, Rats, Stem Cells, T-Lymphocytes