Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is neither always accessible nor easy to perform in children. We aimed to propose a machine learning model to assess the need for a SARS-CoV-2 test in children (<16 years old), depending on their clinical symptoms. METHODS: Epidemiological and clinical data were obtained from the REDCap® registry. Overall, 4434 SARS-CoV-2 tests were performed in symptomatic children between 1 November 2020 and 31 March 2021, 784 were positive (17.68%). We pre-processed the data to be suitable for a machine learning (ML) algorithm, balancing the positive-negative rate and preparing subsets of data by age. We trained several models and chose those with the best performance for each subset. RESULTS: The use of ML demonstrated an AUROC of 0.65 to predict a COVID-19 diagnosis in children. The absence of high-grade fever was the major predictor of COVID-19 in younger children, whereas loss of taste or smell was the most determinant symptom in older children. CONCLUSIONS: Although the accuracy of the models was lower than expected, they can be used to provide a diagnosis when epidemiological data on the risk of exposure to COVID-19 is unknown.

Original publication

DOI

10.3390/v14010063

Type

Journal article

Journal

Viruses

Publication Date

30/12/2021

Volume

14

Keywords

COVID-19, SARS-CoV-2, deep learning, epidemiology, machine learning, microbiology, paediatrics, Adolescent, COVID-19, COVID-19 Testing, Child, Child, Preschool, Female, Humans, Infant, Infant, Newborn, Machine Learning, Male, Models, Statistical, Predictive Value of Tests, SARS-CoV-2