Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Therapeutic embolotherapy is the deliberate occlusion of a blood vessel within the body, which can be for the prevention of internal bleeding, stemming of flow through an arteriovenous malformation, or occlusion of blood vessels feeding a tumor. This is achieved using a wide selection of embolic devices such as balloons, coils, gels, glues, and particles. Particulate embolization is often favored for blocking smaller vessels, particularly within hypervascularized tumors, as they are available in calibrated sizes and can be delivered distally via microcatheters for precise occlusion with associated locoregional drug delivery. Embolic performance has been traditionally evaluated using animal models, but with increasing interest in the 3R's (replacement, reduction, refinement), manufacturers, regulators, and clinicians have shown interest in the development of more sophisticated in vitro methods for evaluation and prediction of in vivo performance. Herein the current progress in developing bespoke techniques incorporating physical handling, fluid dynamics, occlusive behavior, and sustained drug elution kinetics within vascular systems is reviewed. While it is necessary to continue to validate the safety of such devices in vivo, great strides have been made in the development of bench tests that better predict the behavior of these products aligned with the principles of the 3R's.

Original publication

DOI

10.1002/adhm.201601291

Type

Journal article

Journal

Adv healthc mater

Publication Date

05/2017

Volume

6

Keywords

drug-eluting bead, embolization, microsphere, performance testing, Animals, Embolization, Therapeutic, Humans, Microspheres