Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Risk prediction models need thorough validation to assess their performance. Validation of models for survival outcomes poses challenges due to the censoring of observations and the varying time horizon at which predictions can be made. This article describes measures to evaluate predictions and the potential improvement in decision making from survival models based on Cox proportional hazards regression. As a motivating case study, the authors consider the prediction of the composite outcome of recurrence or death (the "event") in patients with breast cancer after surgery. They developed a simple Cox regression model with 3 predictors, as in the Nottingham Prognostic Index, in 2982 women (1275 events over 5 years of follow-up) and externally validated this model in 686 women (285 events over 5 years). Improvement in performance was assessed after the addition of progesterone receptor as a prognostic biomarker. The model predictions can be evaluated across the full range of observed follow-up times or for the event occurring by the end of a fixed time horizon of interest. The authors first discuss recommended statistical measures that evaluate model performance in terms of discrimination, calibration, or overall performance. Further, they evaluate the potential clinical utility of the model to support clinical decision making according to a net benefit measure. They provide SAS and R code to illustrate internal and external validation. The authors recommend the proposed set of performance measures for transparent reporting of the validity of predictions from survival models.

Original publication




Journal article


Ann intern med

Publication Date





105 - 114


Humans, Female, Proportional Hazards Models, Breast Neoplasms, Prognosis