Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sarcopenia is defined as the loss of skeletal muscle mass and strength with age. There is increasing recognition of the serious health consequences in terms of disability, morbidity and mortality as well as major healthcare costs. Adult determinants of sarcopenia including age, gender, size, levels of physical activity and heritability have been well described. Nevertheless, there remains considerable unexplained variation in muscle mass and strength between older adults that may reflect not only the current rate of loss but the peak attained earlier in life. To date most epidemiological studies of sarcopenia have focused on factors modifying decline in later life; however, a life course approach to understanding sarcopenia, additionally, focuses on factors operating earlier in life including developmental influences. The epidemiological evidence linking low birth weight with lower muscle mass and strength is strong and consistent with replication in a number of different groups including children, young and older adults. However, most of the evidence for the cellular, hormonal, metabolic and molecular mechanisms underlying these associations comes from animal models. The next stage is to translate the understanding of mechanisms from animal muscle to human muscle enabling progress to be made not only in earlier identification of individuals at risk of sarcopenia but also in the development of beneficial interventions across the life course.

Original publication




Journal article


J dev orig health dis

Publication Date





150 - 157