Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Percutaneous coronary intervention is associated with mechanical endovascular injury and endothelial denudation. Re-endothelialization is essential for restoration of normal vascular homeostasis and regulation of neointimal hyperplasia. The endothelial progenitor cell recently emerged as an important component of the response to vascular injury, having the potential to accelerate vascular repair through rapid re-endothelialization. There remains considerable uncertainty over the precise identity and function of endothelial progenitor cells, and harnessing their therapeutic potential remains a challenge. A better understanding of the role of circulating progenitors in the response to vascular injury is necessary if we are to develop effective strategies to enhance vascular repair after percutaneous coronary intervention. In this review, we examine the preclinical and clinical evidence of a role for bone marrow-derived putative endothelial progenitor cells after iatrogenic vascular injury associated with balloon angioplasty and stent deployment. Therapies designed to mobilize endothelial progenitors or to increase their ability to home to the site of stent implantation may have a role in the future management of patients undergoing percutaneous coronary intervention.

Original publication




Journal article


J am coll cardiol

Publication Date





1553 - 1565


Angioplasty, Balloon, Coronary, Animals, Coronary Restenosis, Coronary Vessels, Endothelium, Vascular, Humans, Intraoperative Period, Stem Cells