Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Formation of the immunological synapse (IS) is a key event during initiation of an adaptive immune response to a specific antigen. During this process, a T cell and an antigen presenting cell form a stable contact that allows the T cell to integrate both internal and external stimuli in order to decide whether to activate. The threshold for T cell activation depends on the strength and frequency of the calcium (Ca2+) signaling induced by antigen recognition, and it must be tightly regulated to avoid undesired harm to healthy cells. Potassium (K+) channels are recruited to the IS to maintain the negative membrane potential required to sustain Ca2+ entry. However, the precise localization of K+ channels within the IS remains unknown. Here, we visualized the dynamic subsynaptic distribution of Kv1.3, the main voltage-gated potassium channel in human T cells. Upon T cell receptor engagement, Kv1.3 polarized toward the synaptic cleft and diffused throughout the F-actin rich distal compartment of the synaptic interface-an effect enhanced by CD2-CD58 corolla formation. As the synapse matured, Kv1.3 clusters were internalized at the center of the IS and released in extracellular vesicles. We propose a model in which specific distribution of Kv1.3 within the synapse indirectly regulates the channel function and that this process is limited through Kv1.3 internalization and release in extracellular vesicles.

Original publication

DOI

10.1016/j.bpj.2023.08.011

Type

Journal article

Journal

Biophys j

Publication Date

18/08/2023