Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mammalian transposable elements have intrinsic regulatory elements that can activate neighboring genes, and it is speculated that they can also carry extrinsic transactivating DNA sequences to new genomic locations. We have identified a polymorphic segment of the human interferon-gamma promoter region where two adjacent binding sites for NF-kappaB and NFAT originated from the insertion of an Alu element approximately 22-34 MYA. Both binding sites lie outside the Alu consensus sequence but within the boundaries of the insertion, suggesting that this segment of DNA was comobilized when the Alu element moved from another part of the genome. Sequence comparisons and examination of DNA-protein interactions across nine different primate species indicate that the inserted sequence contained the intact NFAT binding site, whereas the ability to bind NF-kappaB evolved through a series of mutations after the insertion. These observations are consistent with the notion that retropseudogenes can comobilize intact regulatory sequences to new locations and thereby influence the evolution of gene regulatory networks; however, the extent to which such events have shaped the evolution of gene regulation remains unknown.

Original publication

DOI

10.1093/oxfordjournals.molbev.a004145

Type

Journal article

Journal

Mol biol evol

Publication Date

06/2002

Volume

19

Pages

884 - 890

Keywords

Alu Elements, Base Sequence, Binding Sites, DNA Transposable Elements, DNA-Binding Proteins, Genetic Variation, Humans, Interferon-gamma, Molecular Sequence Data, Mutation, NF-kappa B, NFATC Transcription Factors, Nuclear Proteins, Phylogeny, Polymorphism, Genetic, Promoter Regions, Genetic, Sequence Alignment, Sequence Analysis, DNA, Transcription Factors