Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Perfluorocarbon nanodroplets (PFC-NDs) are promising ultrasound-responsive theranostic agents with applications in both diagnostic imaging and drug delivery. The acoustic vaporisation threshold, extravasation potential, and stability of PFC-NDs are all affected by their size. However, methods to ensure reproducible size and concentration during production by sonication are lacking. To address this need, we examined the effect of temperature, sonication time, sonication intensity, PFC concentration and sonicator tip height on ND characteristics. PFC-NDs with a perfluoro-n-pentane (PFP) core and a phospholipid shell were manufactured by probe-sonication. Pulsed sonication was used to maintain the sample temperature below the boiling point of PFP. Median particle diameter was measured using nanoparticle tracking analysis. PFC-ND diameter increased with increasing PFP concentration, with a stronger relationship as sonicator tip height increased. Above 5% v/v PFP, there was a qualitative increase in the number of particles visible by light microscopy. Increasing the sonication duration did not yield a significant change in ND size. A minimum amplitude of 60% was required for mixing to occur, with amplitudes of 80% and 100% resulting in foam production. Sonicator power output was linear with respect to time but differed depending on sample volume, composition, and vessel geometry. This study indicates that controlling the processing parameters can facilitate reproducible manufacturing of PFC-NDs.

Original publication

DOI

10.1016/j.ultsonch.2025.107332

Type

Journal article

Journal

Ultrason sonochem

Publication Date

09/04/2025

Volume

118

Keywords

Particle manufacture, Perfluorocarbon nanodroplet, Ultrasound