Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Opportunistic pathogen Pseudomonas aeruginosa plays a crucial role in chronic wound biofilms, increasing infection's morbidity and mortality. In recent years, the signalling molecule nitric oxide (NO) and chelating agent tetrasodium EDTA (T-EDTA) have been applied therapeutically owing to their multifactorial effects including bacterial killing, biofilm dispersal, and wound healing. However, previous studies assessing NO's antibiofilm efficacy have not considered the variable pH and temperature of the wound environment. Here, pH-dependent NO donors N-diazeniumdiolates (NONOates), PAPA NONOate (PA-NO) and Spermine NONOate (SP-NO), and T-EDTA were applied in wound-relevant pH environments (pH 5.5-8.5) and temperatures (32 °C and 37 °C) to P. aeruginosa PAO1 biofilms grown for either 24 or 48 h. At 32 °C and pH 7.5, 250 μM PA-NO reduced 24-h biofilm biomass by 35 %. At 37 °C, 250 μM PA-NO and 4 % w/v T-EDTA caused 21 % and 57 % biomass reduction in 24-h biofilms, respectively. In 48-h biofilms, NONOates did not induce significant biomass reduction, while T-EDTA maintained its efficacy with a 64 % reduction. A subsequent experiment investigated the impact of NONOates and T-EDTA as pre-treatments before exposure to ciprofloxacin. Unexpectedly, NONOate pre-treatment decreased ciprofloxacin's effectiveness, resulting in approximately 1-log increase in viable planktonic and biofilm-residing cells compared to ciprofloxacin alone. It was hypothesized that this protective effect might stem from NO-induced decreased cellular respiration, which inhibits reactive oxygen species (ROS)-mediated bactericidal mechanisms. These findings highlight both the potential and complexities of developing effective antimicrobial strategies for chronic wound infections, emphasizing the need for further research to optimize treatment approaches.

Original publication

DOI

10.1016/j.bioflm.2025.100280

Type

Journal article

Journal

Biofilm

Publication Date

06/2025

Volume

9

Keywords

Biofilm, Chronic wound, Ciprofloxacin, EDTA, NONOate, Nitric oxide, Pseudomonas aeruginosa