Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractUnlike most disasters, drought does not appear abruptly. It slowly builds over time due to the changes in different environmental and climatological factors. It is one of the deadly disasters that has plagued almost every region of the globe since early civilization. Droughts are scientifically being studied with the help of either simple or composite indices. At 500-m spatial resolution, this study presents global scale drought severity index (DSI), a composite index using Moderate Resolution Imaging Spectroradiometer (MODIS), 8-day temporal resolution evapotranspiration (ET), potential evapotranspiration (PET), and normalized difference vegetation index (NDVI). This index is mainly used to identify meteorological droughts and also has proven reliable for studying agriculture droughts. In this study, Google Earth Engine (GEE), a cloud-based geospatial data computational platform, is used for drought mapping and monitoring from 2001 to 2019. For annual DSI spatial maps, the statistical median is computed ranging from − 1 to + 1, which means drought struck or dry regions have values closer to negative, and wet zones have values near to positive. For the validity of DSI results, the findings are compared with available records of droughts struck in previous years. This study declares that continent-wise, Australia, Africa, and Asia have the most extreme and frequent drought events while South America and North America come a close second. Europe is the least affected by this particular weather event when compared to other continents.

Original publication

DOI

10.1007/s00704-021-03715-9

Type

Journal article

Journal

Theoretical and applied climatology

Publisher

Springer Science and Business Media LLC

Publication Date

10/2021

Volume

146

Pages

411 - 427