Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The relationship between ambient temperature and infectious disease incidence lacks comprehensive documentation. Our study, therefore, sought to systematically determine the national association between temperature and the incidence of infectious diseases, categorized into respiratory, gastrointestinal and enterovirus, and vector-borne categories. We aimed to study the association between extreme cold and heat extreme temperature on infectious disease occurrence among children and teenagers, and to evaluate the secular trends in these diseases in relation to temperature extremes. METHODS: We accessed the dataset encompassing 8,731,930 cases of 27 distinct infectious diseases, spanning respiratory, gastrointestinal and enterovirus infections, and vector-borne categories, across 507 Chinese cities from 2008 to 2019. Employing a time-stratified case-crossover design, we quantified the association between temperature exposure and the risk of infectious diseases specific to each city. The attributable fractions for temperature-related risks were determined by identifying extreme temperatures exceeding the 90th percentile and falling below the 10th percentile of the respective city-specific temperature distributions, indicative of heat and cold effects. A comparative analysis of these attributable fractions between the periods 2008-2010 and 2017-2019 was conducted to evaluate the secular changes of infectious diseases associated with cold and heat. FINDINGS: Our analysis revealed significant non-linear associations between temperature and the incidence of specific infectious diseases. Cold temperatures were found to be responsible for 1.35% (95% CI: 1.18 to 1.51%) of respiratory infectious disease cases. In contrast, heat was attributed to a lower proportion, with 0.29% (95% CI: 0.25 to 0.33%) of such cases. Among gastrointestinal and enterovirus diseases, a more substantial 4.93% (95% CI: 4.82 to 5.04%) of cases were linked to heat exposure. Notably, vector-borne diseases demonstrated the highest attributable fraction to heat, with 22.12% (95% CI: 21.82 to 22.41%) of cases affected. Specifically, five diseases-scarlet fever, tuberculosis, mumps, leprosy, and typhus-exhibited an increased incidence associated with cold temperatures. Notably, for scarlet fever, leprosy, and typhus, the attributable fraction escalated from the period 2008-2010 to 2017-2019. However, findings for leprosy should be interpreted with caution due to its low incidence. As for heat-related diseases, thirteen were identified, with the attributable fraction for nine diseases-tuberculosis, pertussis, hand, foot, and mouth disease, infectious diarrhea, dysentery, hepatitis A, typhoid and paratyphoid, dengue, and Japanese encephalitis-showing a marked increase over the same comparative timeframes. INTERPRETATION: The temperature increase observed from 2008-2010 to 2017-2019 has been accompanied by a rising trend in heat-related infections. Among all infectious diseases in Chinese children and adolescents, more than half (13 out of 24) are heat-related, compared to five infections linked to extreme cold. The risk of gastrointestinal and enterovirus infections was associated with extreme hot temperatures, with vector-borne diseases particularly responsive to extreme heat. These findings highlight an urgent requirement for proactive public health measures to address the potential impact of temperature variability on infectious disease outbreaks, safeguarding vulnerable demographics in the context of climate change.

Original publication

DOI

10.1016/j.jinf.2025.106547

Type

Journal article

Journal

J infect

Publication Date

04/07/2025

Keywords

Respiratory diseases, children and adolescents, gastrointestinal and enterovirus diseases, temperature, vector-borne diseases