Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In most cancers, transformation begins in a single cell in an epithelial cell sheet. However, it is not known what happens at the interface between non-transformed (normal) and transformed cells once the initial transformation has occurred. Using Madin-Darby canine kidney (MDCK) epithelial cells that express constitutively active, oncogenic Ras (Ras(V12)) in a tetracycline-inducible system, we investigated the cellular processes arising at the interface between normal and transformed cells. We show that two independent phenomena occur in a non-cell-autonomous manner: when surrounded by normal cells, Ras(V12) cells are either apically extruded from the monolayer, or form dynamic basal protrusions and invade the basal matrix. Neither apical extrusion nor basal protrusion formation is observed when Ras(V12) cells are surrounded by other Ras(V12) cells. We show that Cdc42 and ROCK (also known as Rho kinase) have vital roles in these processes. We also demonstrate that E-cadherin knockdown in normal cells surrounding Ras(V12) cells reduces the frequency of apical extrusion, while promoting basal protrusion formation and invasion. These results indicate that Ras(V12)-transformed cells are able to recognize differences between normal and transformed cells, and consequently leave epithelial sheets either apically or basally, in a cell-context-dependent manner.

Original publication

DOI

10.1038/ncb1853

Type

Journal article

Journal

Nat cell biol

Publication Date

04/2009

Volume

11

Pages

460 - 467

Keywords

Animals, Cadherins, Cell Lineage, Cell Polarity, Cell Transformation, Neoplastic, Dogs, Epithelial Cells, Epithelium, Green Fluorescent Proteins, Pseudopodia, Recombinant Fusion Proteins, ras Proteins