Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The semi-synthetic sulfated polysaccharide PPS (pentosan polysulfate) increases affinity between the aggrecan-degrading ADAMTSs (adamalysins with thrombospondin motifs) and their endogenous inhibitor, TIMP (tissue inhibitor of metalloproteinases)-3. In the present study we demonstrate that PPS mediates the formation of a high-affinity trimolecular complex with ADAMTS-5 and TIMP-3. A TIMP-3 mutant that lacks extracellular-matrix-binding ability was insensitive to this affinity increase, and truncated forms of ADAMTS-5 that lack the Sp (spacer) domain had reduced PPS-binding ability and sensitivity to the affinity increase. PPS molecules composed of 11 or more saccharide units were 100-fold more effective than those of eight saccharide units, indicating the involvement of extended or multiple protein-interaction sites. The formation of a high-affinity trimolecular complex was completely abolished in the presence of 0.4 M NaCl. These results suggest that PPS enhances the affinity between ADAMTS-5 and TIMP-3 by forming electrostatically driven trimolecular complexes under physiological conditions.

Original publication

DOI

10.1042/bj20112159

Type

Journal article

Journal

The Biochemical journal

Publication Date

04/2012

Volume

443

Pages

307 - 315

Addresses

The Kennedy Institute of Rheumatology, University of Oxford, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK. linda.troeberg@kennedy.ox.ac.uk

Keywords

Humans, Sodium Chloride, Pentosan Sulfuric Polyester, Recombinant Proteins, Tissue Inhibitor of Metalloproteinase-3, Chromatography, Gel, Amino Acid Substitution, Sequence Deletion, Protein Structure, Tertiary, Protein Binding, ADAM Proteins, HEK293 Cells, ADAMTS5 Protein