Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Collagen-hydroxyapatite composites for bone tissue engineering are usually made by freezing an aqueous dispersion of these components and then freeze-drying. This method creates a foamed matrix which may not be optimum for growing cell colonies larger than a few hundred micrometres due to the limited diffusion of nutrients and oxygen, and the limited removal of waste metabolites. Incorporating a network of microchannels in the interior of the scaffold which may permit the flow of nutrient-rich media has been proposed as a method to overcome these diffusion constraints. A novel three-dimensional printing and critical point drying technique previously used to make collagen scaffolds has been modified to create collagen-hydroxyapatite scaffolds. This study investigates the properties of collagen and collagen-hydroxyapatite scaffolds and whether subjecting collagen and hydroxyapatite to critical point drying with liquid carbon dioxide results in any changes to the individual components. Specifically, the hydroxyapatite component was characterized before and after processing using wavelength-dispersive X-ray spectroscopy, X-ray diffraction and infrared spectroscopy. Critical point drying did not induce elemental, crystallographic or molecular changes in the hydroxyapatite. The quaternary structure of collagen was characterized using transmission electron microscopy and the quarter-staggered array characteristic of native collagen remained after processing. Microstructural characterization of the composites using scanning electron microscopy showed the hydroxyapatite particles were mechanically interlocked in the collagen matrix. The in vitro biological response of MG63 osteogenic cells to the composite scaffolds were characterized using the Alamar Blue, PicoGreen, alkaline phosphate and Live/Dead assays, and revealed that the critical point dried scaffolds were non-cytotoxic.

Original publication

DOI

10.1016/j.actbio.2008.03.016

Type

Journal article

Journal

Acta biomater

Publication Date

09/2008

Volume

4

Pages

1322 - 1331

Keywords

Biocompatible Materials, Bone Substitutes, Carbon Dioxide, Cell Line, Collagen, Desiccation, Durapatite, Equipment Failure Analysis, Humans, Osteoblasts, Solutions, Surface Properties