Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human ζ-crystallin is a Zn(2+)-lacking medium-chain dehydrogenase/reductase (MDR) included in the quinone oxidoreductase (QOR) family because of its activity with quinones. In the present work a novel enzymatic activity was characterized: the double bond α,β-hydrogenation of medium-chain 2-alkenals and 3-alkenones. The enzyme is especially active with lipid peroxidation products such as 4-hydroxyhexenal, and a role in their detoxification is discussed. This specificity is novel in the QOR family, and it is similar to that described in the distantly related alkenal/one reductase family. Moreover, we report the X-ray structure of ζ-crystallin, which represents the first structure solved for a tetrameric Zn(2+)-lacking MDR, and which allowed the identification of the active-site lining residues. Docking simulations suggest a role for Tyr53 and Tyr59 in catalysis. The kinetics of Tyr53Phe and Tyr59Phe mutants support the implication of Tyr53 in binding/catalysis of alkenal/one substrates, while Tyr59 is involved in the recognition of 4-OH-alkenals.

Original publication

DOI

10.1007/s00018-010-0508-2

Type

Journal article

Journal

Cell mol life sci

Publication Date

03/2011

Volume

68

Pages

1065 - 1077

Keywords

Aldehydes, Catalysis, Cloning, Molecular, Crystallography, X-Ray, DNA Primers, Gas Chromatography-Mass Spectrometry, Humans, Hydrogenation, Kinetics, Models, Molecular, Molecular Structure, Mutagenesis, Site-Directed, Protein Binding, Protein Conformation, Substrate Specificity, zeta-Crystallins