Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this short communication, we describe the scope and flexibility of using a novel device containing three coaxially arranged needles to form a variety of novel morphologies. Different combinations of materials are subjected to controlled flow through the device under the influence of an applied electric field. The resulting electrohydrodynamic flow allows us to prepare double-layered bubbles, porous encapsulated threads and nanocapsules containing three layers. The ability to process such multilayered structures is very significant for biomedical engineering applications, for example, generating capsules for drug delivery, which can provide multistage controlled release.

Original publication




Journal article


J r soc interface

Publication Date





1255 - 1261


Biomedical Engineering, Drug Delivery Systems, Electric Conductivity, Microscopy, Electron, Scanning, Microscopy, Electron, Transmission, Polyurethanes, Surface Tension, Viscosity