Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The aim of this study was to efficiently expand less differentiated tenocytes with minimum use of fetal bovine serum (FBS) for tenocyte-based tendon tissue engineering. To achieve this goal, human tenocytes were cultured in different concentrations of FBS and combinations of growth factors PDGF(BB), IGF-1 and bFGF. A number of growth factors were selected that could support tenocyte expansion at reduced differentiated state with minimum FBS usage. Results showed that the expansion of the tenocytes cultured for 14 days with 1% FBS, 50 ng/ml PDGF(BB) and 50 ng/ml bFGF was similar to that cultured in the 10% FBS control group. The tenocytes cultured in the treatment group showed significantly lower collagen synthesis and down-regulation of mRNA expression of tendon differentiation markers. Cell morphology confirmed that tenocytes cultured in the growth factors had reduced collagen fibril formation compared to tenocytes cultured in 10% FBS. Our findings confirm the feasibility of inducing human tenocyte expansion in vitro with the least amount of FBS usage, while controlling their differentiation until required.

Original publication

DOI

10.1002/term.1597

Type

Journal article

Journal

Journal of tissue engineering and regenerative medicine

Publication Date

12/2014

Volume

8

Pages

955 - 962

Addresses

General Surgery Department, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.

Keywords

Tendons, Cells, Cultured, Humans, Tissue Engineering, Reverse Transcriptase Polymerase Chain Reaction