Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In its widest sense, the term epigenetics describes a range of mechanisms in genome function that do not solely result from the DNA sequence itself. These mechanisms comprise DNA and chromatin modifications and their associated systems, as well as the noncoding RNA machinery. The epigenetic apparatus is essential for controlling normal development and homeostasis, and also provides a means for the organism to integrate and react upon environmental cues. A multitude of functional studies as well as systematic genome-wide mapping of epigenetic marks and chromatin modifiers reveal the importance of epigenomic mechanisms in human pathologies, including inflammatory conditions and musculoskeletal disease such as rheumatoid arthritis. Collectively, these studies pave the way to identify possible novel therapeutic intervention points and to investigate the utility of drugs that interfere with epigenetic signalling not only in cancer, but possibly also in inflammatory and autoimmune diseases.

Original publication

DOI

10.1186/ar4186

Type

Journal article

Journal

Arthritis research & therapy

Publication Date

03/04/2013

Volume

15

Keywords

Humans, Musculoskeletal Diseases, Autoimmune Diseases, Epigenesis, Genetic