Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The T cell Ag receptor (CD3/Ti) and the sheep E receptor (CD2) expressed on the surface of human T cells are both capable of initiating intracellular signals necessary for T cell activation. CD3/Ti interacts with Ag to initiate cellular immune responses. Although the exact function of CD2 is unknown, lymphocyte function-associated Ag 3 (LFA-3), a 55- to 70-kDa receptor expressed on a broad spectrum of hemopoietic and nonhemopoietic cells, has recently been shown to be its natural ligand. We show here that although purified multimeric LFA-3 is not capable of initiating transmembrane signaling events on its own, the combination of LFA-3 and the anti-CD2 mAb CD2.1 induces intracellular calcium increases, phosphatidylinositol second messenger generation and lymphokine secretion in the T cell leukemic line Jurkat. In order to study the signaling requirements of CD2, we compared the ability of CD2 mAb and LFA-3 to initiate activation signals in Jurkat and in three Jurkat-derived mutants. A CD3-CD2+ mutant failed to increase calcium or exhibit phosphatidylinositol hydrolysis to either the combination of agonist CD2 mAb 9-1 and 9.6 or LFA-3 and CD2.1. Reconstitution of the Ag receptor by transfection of the Ti-beta-chain restored the expression of the CD3/Ti complex and the ability to respond to either combination of CD2 ligands. However, no response to CD2 ligands was detected in a CD3+CD2+ mutant selected for signaling defects to CD3/Ti ligands. Complementation of the CD3/Ti signaling defect by cell fusion also restored competency to respond to CD2 agonists. These results demonstrate that LFA-3 under appropriate conditions can activate T cells via the CD2 complex and that this activation requires not only the cell surface expression of the CD3/Ti complex but also a functional Ag receptor pathway.


Journal article


J immunol

Publication Date





1904 - 1911


Adjuvants, Immunologic, Antigens, Differentiation, T-Lymphocyte, Antigens, Surface, CD2 Antigens, CD58 Antigens, Calcium, Cell Line, Drug Synergism, Humans, Lymphocyte Activation, Membrane Glycoproteins, Receptors, Antigen, T-Cell, Receptors, Immunologic, Second Messenger Systems, T-Lymphocytes