Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The manner in which a membrane protein is anchored to the lipid bilayer may have a profound influence on its function. Most cell surface membrane proteins are anchored by a membrane-spanning segment(s) of the polypeptide chain, but another type of anchor has been described for several proteins: a phosphatidyl inositol glycan moiety, attached to the protein C terminus. This type of linkage has been identified on membrane proteins involved in adhesion and transmembrane signalling and could be important in the execution of these functions. We report here that an immunologically important adhesion glycoprotein, lymphocyte function-associated antigen 3 (LFA-3), can be anchored to the membrane by both types of mechanism. These two distinct cell-surface forms of LFA-3 are derived from different biosynthetic precursors. The existence of a phosphatidyl-inositol-linked and a transmembrane anchored form of LFA-3 has important implications for adhesion and transmembrane signalling by LFA-3.

Original publication




Journal article



Publication Date





846 - 848


Animals, Antigens, Surface, Cell Adhesion, Cell Line, Cell Membrane, Chromatography, Affinity, Erythrocyte Membrane, Glycoproteins, Lymphocyte Function-Associated Antigen-1