Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The manner in which a membrane protein is anchored to the lipid bilayer may have a profound influence on its function. Most cell surface membrane proteins are anchored by a membrane-spanning segment(s) of the polypeptide chain, but another type of anchor has been described for several proteins: a phosphatidyl inositol glycan moiety, attached to the protein C terminus. This type of linkage has been identified on membrane proteins involved in adhesion and transmembrane signalling and could be important in the execution of these functions. We report here that an immunologically important adhesion glycoprotein, lymphocyte function-associated antigen 3 (LFA-3), can be anchored to the membrane by both types of mechanism. These two distinct cell-surface forms of LFA-3 are derived from different biosynthetic precursors. The existence of a phosphatidyl-inositol-linked and a transmembrane anchored form of LFA-3 has important implications for adhesion and transmembrane signalling by LFA-3.

Original publication

DOI

10.1038/329846a0

Type

Journal article

Journal

Nature

Publication Date

10/1987

Volume

329

Pages

846 - 848

Addresses

Laboratory of Membrane Immunochemistry, Dana Farber Cancer Institute, Boston, Massachusetts.

Keywords

Erythrocyte Membrane, Cell Line, Cell Membrane, Animals, Glycoproteins, Lymphocyte Function-Associated Antigen-1, Antigens, Surface, Chromatography, Affinity, Cell Adhesion