Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The key role of interleukin (IL)-23 in the pathogenesis of autoimmune and chronic inflammatory disorders is supported by the identification of IL-23 receptor (IL-23R) susceptibility alleles associated with inflammatory bowel disease, psoriasis and ankylosing spondylitis. IL-23-driven inflammation has primarily been linked to the actions of T-helper type 17 (TH17) cells. Somewhat overlooked, IL-23 also has inflammatory effects on innate immune cells and can drive T-cell-independent colitis. However, the downstream cellular and molecular pathways involved in this innate intestinal inflammatory response are poorly characterized. Here we show that bacteria-driven innate colitis is associated with an increased production of IL-17 and interferon-gamma in the colon. Stimulation of colonic leukocytes with IL-23 induced the production of IL-17 and interferon-gamma exclusively by innate lymphoid cells expressing Thy1, stem cell antigen 1 (SCA-1), retinoic-acid-related orphan receptor (ROR)-gammat and IL-23R, and these cells markedly accumulated in the inflamed colon. IL-23-responsive innate intestinal cells are also a feature of T-cell-dependent models of colitis. The transcription factor ROR-gammat, which controls IL-23R expression, has a functional role, because Rag-/-Rorc-/- mice failed to develop innate colitis. Last, depletion of Thy1+ innate lymphoid cells completely abrogated acute and chronic innate colitis. These results identify a previously unrecognized IL-23-responsive innate lymphoid population that mediates intestinal immune pathology and may therefore represent a target in inflammatory bowel disease.

Original publication

DOI

10.1038/nature08949

Type

Journal article

Journal

Nature

Publication Date

29/04/2010

Volume

464

Pages

1371 - 1375

Keywords

Animals, Antigens, Ly, Antigens, Thy-1, Colitis, Helicobacter Infections, Helicobacter hepaticus, Immunity, Innate, Interferon-gamma, Interleukin-17, Interleukin-23, Intestines, Irritable Bowel Syndrome, Lymphoid Tissue, Membrane Proteins, Mice, Nuclear Receptor Subfamily 1, Group F, Member 3, Receptors, Interleukin