Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We describe a general method based on principal coordinates analysis to predict the effects of single-nucleotide polymorphisms within regulatory sequences on DNA-protein interactions. We use binding data for the transcription factor NF-kappaB as a test system. The method incorporates the effects of interactions between base pair positions in the binding site, and we demonstrate that such interactions are present for NF-kappaB. Prediction accuracy is higher than with profile models, confirmed by crossvalidation and by the experimental verification of our predictions for additional sequences. The binding affinities of all potential NF-kappaB sites on human chromosome 22, together with the effects of known single-nucleotide polymorphisms, are calculated to determine likely functional variants. We propose that this approach may be valuable, either on its own or in combination with other methods, when standard profile models are disadvantaged by complex internucleotide interactions.

Original publication




Journal article


Proceedings of the National Academy of Sciences of the United States of America

Publication Date





8167 - 8172


Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.


Chromosomes, Human, Pair 22, Humans, NF-kappa B, DNA, Reproducibility of Results, Binding Sites, Base Sequence, Kinetics, Genetic Variation