Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hip fracture is the most significant complication of osteoporosis in terms of mortality, long-term disability and decreased quality of life. In the recent years, different techniques have been developed to assess lower limb strength and ultimately fracture risk. Here we examine relationships between two measures of lower limb bone geometry and strength; proximal femoral geometry and tibial peripheral quantitative computed tomography. We studied a sample of 431 women and 488 men aged in the range 59-71 years. The hip structural analysis (HSA) programme was employed to measure the structural geometry of the left hip for each DXA scan obtained using a Hologic QDR 4500 instrument while pQCT measurements of the tibia were obtained using a Stratec 2000 instrument in the same population. We observed strong sex differences in proximal femoral geometry at the narrow neck, intertrochanteric and femoral shaft regions. There were significant (p < 0.001) associations between pQCT-derived measures of bone geometry (tibial width; endocortical diameter and cortical thickness) and bone strength (strength strain index) with each corresponding HSA variable (all p < 0.001) in both men and women. These results demonstrate strong correlations between two different methods of assessment of lower limb bone strength: HSA and pQCT. Validation in prospective cohorts to study associations of each with incident fracture is now indicated.

Original publication




Journal article


Calcif tissue int

Publication Date





158 - 164


Epidemiology, Hip structural analysis, Osteoporosis, Peripheral quantitative computed tomography, Absorptiometry, Photon, Aged, Bone Density, Female, Hip, Humans, Leg, Male, Middle Aged, Prospective Studies, Tomography, X-Ray Computed