Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

To study the pathogenesis of aseptic loosening: in particular, to determine whether macrophages responding to particles of biomaterials commonly used in arthroplasty surgery for arthritis are capable of differentiating into osteoclastic bone resorbing cells, and the cellular and hormonal conditions required for this to occur.Biomaterial particles (polymethylmethacrylate, high density polyethylene, titanium, chromium-cobalt, stainless steel) were implanted subcutaneously into mice. Macrophages were isolated from the foreign body granulomas that resulted, cultured on bone slices and coverslips, and assessed for both cytochemical and functional evidence of osteoclast differentiation.Tartrate resistant acid phosphatase (TRAP) negative macrophages isolated from granulomas containing particles of all types of biomaterial composition were capable of differentiating into TRAP positive cells capable of extensive lacunar bone resorption (assessed by scanning electron microscopy). The presence of both UMR106 rat osteoblast-like cells and 1,25-dihydroxy vitamin D3 was necessary for this to occur.All implant materials produce wear particles that are the focus of a heavy foreign body macrophage response in the fibrous membrane between a loose implant component and the host bone undergoing resorption. These findings underline the importance of biomaterial wear particle generation and the macrophage response to different types of biomaterial wear particles in the pathogenesis of aseptic loosening.

Original publication

DOI

10.1136/ard.55.6.388

Type

Journal article

Journal

Annals of the rheumatic diseases

Publication Date

06/1996

Volume

55

Pages

388 - 395

Addresses

Nuffield Department of Orthopaedic Surgery, University of Oxford, United Kingdom.

Keywords

Cells, Cultured, Macrophages, Animals, Mice, Inbred Strains, Mice, Bone Resorption, Granuloma, Foreign-Body, Prosthesis Failure, Biocompatible Materials, Microscopy, Electron, Scanning, Joint Prosthesis, Cell Differentiation