Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Macrophages exhibit a phenotypic plasticity that enables them to orchestrate specific immune responses to distinct threats. The microbial product lipopolysaccharide (LPS) and the extracellular matrix glycoprotein tenascin-C are released during bacterial infection and tissue injury, respectively, and both activate Toll-like receptor 4 (TLR4). We found that these two TLR4 ligands stimulated distinct signaling pathways in macrophages, resulting in cells with divergent phenotypes. Although macrophages activated by LPS or tenascin-C displayed some common features, including activation of nuclear factor κB and mitogen-activated protein kinase signaling and cytokine synthesis, each ligand stimulated the production of different subsets of cytokines and generated different phosphoproteomic signatures. Moreover, tenascin-C promoted the generation of macrophages that exhibited increased synthesis and phosphorylation of extracellular matrix components, whereas LPS stimulated the production of macrophages that exhibited an enhanced capacity to degrade the matrix. These data reveal how the activation of one pattern recognition receptor by different microenvironmental cues generates macrophage with distinct phenotypes.

Original publication

DOI

10.1126/scisignal.aaf3596

Type

Journal article

Journal

Science signaling

Publication Date

30/08/2016

Volume

9

Addresses

Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, U.K.

Keywords

Cells, Cultured, Macrophages, Humans, Lipopolysaccharides, Phosphoproteins, Tenascin, Cytokines, Signal Transduction, Toll-Like Receptor 4, Cellular Microenvironment