Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Why chronic inflammatory reactions persist in specific sites, such as rheumatoid arthritis in the joints, remains a mystery. Current models of inflammation have concentrated upon the responses of lymphocytes such as B and T cells to specific antigens, and have attempted, often unsuccessfully, to address the causative agent. However recent studies have shown that stromal cells such as macrophages, endothelial cells, and fibroblasts play important roles in the switch that turns a spontaneously resolving acute inflammatory response within a tissue into chronic and persistent disease. Therapeutic manipulation of the stromal microenvironment has been particularly effective in treating cancer and is likely to provide novel therapies to achieve improved control of chronic inflammatory disease.


Journal article


Discov med

Publication Date





20 - 26


Animals, Arthritis, Rheumatoid, Endothelial Cells, Fibroblasts, Humans, Inflammation, Macrophages, Models, Biological, Stromal Cells