Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Chronic pain is the greatest source of disability globally and claims related to chronic pain feature in many insurance and medico-legal cases. Brain imaging (for example, functional MRI, PET, EEG and magnetoencephalography) is widely considered to have potential for diagnosis, prognostication, and prediction of treatment outcome in patients with chronic pain. In this Consensus Statement, a presidential task force of the International Association for the Study of Pain examines the capabilities of brain imaging in the diagnosis of chronic pain, and the ethical and legal implications of its use in this way. The task force emphasizes that the use of brain imaging in this context is in a discovery phase, but has the potential to increase our understanding of the neural underpinnings of chronic pain, inform the development of therapeutic agents, and predict treatment outcomes for use in personalized pain management. The task force proposes standards of evidence that must be satisfied before any brain imaging measure can be considered suitable for clinical or legal purposes. The admissibility of such evidence in legal cases also strongly depends on laws that vary between jurisdictions. For these reasons, the task force concludes that the use of brain imaging findings to support or dispute a claim of chronic pain - effectively as a pain lie detector - is not warranted, but that imaging should be used to further our understanding of the mechanisms underlying pain.

Original publication

DOI

10.1038/nrneurol.2017.122

Type

Journal article

Journal

Nat rev neurol

Publication Date

10/2017

Volume

13

Pages

624 - 638