Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Initial stability with limited micromotion in uncemented total hip arthroplasty acetabular components is essential for bony attachment and long-term biomechanical fixation. This study compared porous titanium fixation surfaces to clinically established, plasma-sprayed designs in terms of interface stability and required seating force. Porous plasma-sprayed modular and metal-on-metal (MOM) cups were compared to a modular, porous titanium designs. Cups were implanted into polyurethane blocks with1-mm interference fit and subsequently edge loaded to failure. Porous titanium cups exhibited 23% to 65% improvement in initial stability when compared to plasma-sprayed cup designs (P=.01): a clinically significant increase, based on experience and prior literature. The results of this study indicate increased interface stability in porous titanium-coated cups without significantly increasing the necessary force and energy required for full seating.

Original publication

DOI

10.1016/j.arth.2012.07.035

Type

Journal article

Journal

J arthroplasty

Publication Date

03/2013

Volume

28

Pages

510 - 516

Keywords

Acetabulum, Biomechanical Phenomena, Coated Materials, Biocompatible, Hip Prosthesis, Materials Testing, Prosthesis Design, Titanium