Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Published in Nature Communications, a new study reveals a new signalling pathway behind macrophage inflammatory activity

Colon showing epithelial cells
Immunofluorescent staining of the colon showing epithelial cells (cyan), fibroblasts (magenta) and macrophages (green) in intestinal inflammation, provided by Dorothee Berthold, a co-author on the study.

Inflammatory bowel disease (IBD) is a group of conditions involving inflammation of the gut, that is estimated to affect 1 in 100 people in the UK. The term usually refers to two conditions – ulcerative colitis (UC) and Crohn's disease.

The exact causes of IBD are not yet known but it is understood that the protein Interferon Regulatory Factor 5 (IRF5) plays a pro-inflammatory role in in the gut during disease. A new study, published in Nature Communications, reveals a new molecular pathway in the regulation of IRF5 in macrophages, opening opportunities for new treatments to be developed for inflammatory bowel diseases and other inflammatory conditions.

Irina Udalova, Professor of Molecular Immunology at the Kennedy Institute of Rheumatology, University of Oxford explained: "IRF5 is the transcriptome factor that everyone wants to target, but no one has yet been able to. Our approach was to look at other proteins that might activate IRF5, and we found a kinase, PYK2. Both IRF5 and PYK2 are genetic risk factors for IBD, so essentially we were putting together two genetic factors in the one molecular pathway."

The team found PYK2 while screening a large collection of kinase inhibitors. They validated its functional relevance by showing that PYK2 deficient macrophages impair activation of IRF5, leading to a reduction of inflammatory gene expression. Working in collaboration with Prof Benedikt Kessler at the Target Discovery Institute, they have also mapped specific residues in IRF5 protein that PYK2 targets for phosphorylation.

Having established a link, the researchers then investigated the effect of a PYK2 inhibitor called defactinib. Currently being used in a trial for the treatment of cancer, defactinib was shown to have a similar effect on inflammatory gene expression in macrophages as IRF5 deletion itself. In collaboration with Prof Simon Travis at the Translational Gastroenterology Unit at the University of Oxford the authors applied defactinib to human colonic biopsies from UC patients and saw a significant reduction in inflammatory cytokine production.

The authors suggest that it deserves a closer look from the therapeutic perspective. "Defactinib is an attractive molecule for repurposing to treat patients with ulcerative colitis, and maybe with other inflammatory conditions where IRF5 has been implicated," said Irina.

Similar stories

Yoshi Itoh wins the International Dupuytren Award 2022

Yoshi Itoh, Associate Professor and Principal Investigator Cell Migration Group at the Kennedy Institute has been awarded the International Dupuytren Award 2022.

Taking a break from immune-suppressing medicines doubles the antibody response to COVID-19 booster vaccination

The Oxford Clinical Trials Research Unit (OCTRU) at NDORMS played a key role in the VROOM study which found that pausing immune-suppressing medicines such as methotrexate can increase the response to COVID-19 booster jabs.

Ten Years of Athena Swan in the Medical Sciences Division

2022 marks ten years since the first Athena Swan Bronze applications from the Medical Sciences Division. Ten years later, and all 16 departments in the Division have achieved a Silver Award. We look at NDORMS’ Athena Swan journey.

NDORMS researchers awarded Associate Professor title

The University of Oxford has awarded the title of Associate Professor to Adam Cribbs and Luke Jostins.

Oxford's largest ever study into varicose veins shows need for surgery is linked to genetics

A new international study by Oxford researchers published in Nature Communications, establishes for the first time a critical genetic risk score to predict the likelihood of patients suffering with varicose veins to require surgery, as well as pointing the way towards potential new therapies.

Reflecting on the role of Clinical Director of Trauma and Orthopaedics

In 2021 Professor Andrew Price was appointed Clinical Director of Trauma and Orthopaedics at the Oxford University Hospitals NHS Foundation Trust. After 9 months in post, we find out what the challenges are and what he’s been able to bring to the role.