Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research from the Botnar Institute for Musculoskeletal Sciences shows that Artificial intelligence (AI) is an effective tool for fracture detection that has potential to aid clinicians in busy emergency departments.

Bones and joints of the body © SHUTTERSTOCK

Missed or delayed diagnosis of fractures on X-ray is a common error with potentially serious implications for the patient. Lack of timely access to expert opinion as the growth in imaging volumes continues to outpace radiologist recruitment only makes the problem worse.

The study in Radiology finds that AI may help address this problem by acting as an aid to radiologists, helping to speed and improve fracture diagnosis.

"We found that AI performed with a high degree of accuracy, comparable to clinician performance," said study lead author Rachel Kuo, NIHR Academic Clinical Fellow and Plastic and Reconstructive Surgery Registrar, who is part of the Furniss Group at the Botnar Institute. "Importantly, we found this to be the case when AI was validated using independent external datasets, suggesting that the results may be generalizable to the wider population."

To learn more about the technology's potential in the fracture setting, the team, collaborating with Professor Gary Collins from CSM/EQUATOR, reviewed 42 existing studies comparing the diagnostic performance in fracture detection between AI and clinicians. Of the 42 studies, 37 used X-ray to identify fractures, and five used CT.

The researchers found no statistically significant differences between clinician and AI performance. AI's sensitivity for detecting fractures was 91-92%.

"The study results point to several promising educational and clinical applications for AI in fracture detection," Rachel said. "It could reduce the rate of early misdiagnosis in challenging circumstances in the emergency setting, including cases where patients may sustain multiple fractures. It has potential as an educational tool for junior clinicians.

"It could also be helpful as a 'second reader,' providing clinicians with either reassurance that they have made the correct diagnosis or prompting them to take another look at the imaging before treating patients."

Rachel cautioned that research into fracture detection by AI remains in a very early, pre-clinical stage. Only a minority of the studies that she and her colleagues looked at evaluated the performance of clinicians with AI assistance, and there was only one example where an AI was evaluated in a prospective study in a clinical environment.

"It remains important for clinicians to continue to exercise their own judgment," she said. "AI is not infallible and is subject to bias and error."

Read the editorial review in Radiology: Deep Learning Algorithms to Detect Fractures: Systematic Review Shows Promising Results but Many Limitations

Similar stories

Professor Michael Dustin appointed new Chair in Molecular Immunology

A generous gift from the Kennedy Trust for Rheumatology Research has enabled the creation of a new Chair in Molecular Immunology at the University of Oxford.

Empowering data science for single-cell analysis in Zimbabwe

An innovative computational biology training module was launched in November 2022 at the African Institute of Biomedical Science and Technology (AiBST) in Harare, Zimbabwe, where MSc students were trained in single-cell RNA sequencing data analysis.

T-cell coreceptors are well endowed—with kinases!

The kinase occupancy of CD4 and CD8 coreceptors is high, according to a new study published in PNAS.

Two prestigious Hunterian Professorships awarded to NDORMS researchers

Conrad Harrison and Tom Layton have both been awarded Hunterian Professorships for 2022 by the Royal College of Surgeons of England

Adalimumab is found to be a cost-effective treatment for early-stage Dupuytren’s disease

Researchers at the Kennedy Institute of Rheumatology and Oxford Population Health’s Health Economics Research Centre have found that anti-TNF treatment (adalimumab) is likely to be a cost-effective treatment for people affected by early-stage Dupuytren’s disease.

Patients like me

What can patients learn from the experiences of people like them who’ve already had a hip replacement? A new tool called ‘Patients like me’ helps answer some of the questions about pain, complications and how long the prosthesis might last.