Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The research will test innovative technology that harnesses the body’s intrinsic immune system to transform the treatment of cancer and autoimmune diseases.

© richardlewisohn.co.uk

Dr Michael Dustin has entered into a research collaboration agreement with Cue Biopharma, Inc. a clinical-stage biopharmaceutical company that is engineering a novel class of injectable biological treatments designed to selectively seek out and modify targeted T cells within the body.

Viewed as an exciting next step towards the targeted treatment of both solid and blood cancers, the research collaboration aims to determine the interaction of IL-2, a molecule known to stimulate the immune system with Cue Biopharma's CUE-100 series Immuno-STAT™ (Selective Targeting and Alteration of T cells) Biologics.

"We look forward to working with Cue Biopharma on this innovative and promising new technology," said Michael. "We have long appreciated the effects of IL-2 on the immunological synapse, and this research collaboration will allow us to systematically study effects of natural IL-2 and the engineered Immuno-STAT to define potential features of the Immuno-STAT platform that may be driving the selective and preferential modulation of T cells."

Saso Cemerski, senior director of immuno-oncology discovery and translational immunology at Cue Biopharma said: "Dr. Dustin, the scientific pioneer and founder of the T cell immune synapse field has made seminal observations contributing toward our understanding of the biophysical interactions and signaling pathways that underscore immune cell activation, including the mechanistic underpinnings of T cell recognition of antigens. Our strategic collaboration will exploit the state-of-the art technologies pioneered by Dr. Dustin's lab to elucidate the immune synapse interactions of our IL-2-based CUE-100 series that ultimately result in selective and specific activation of tumor-antigen-specific T cells."

Similar stories

Oxford to collaborate with Janssen to map the cellular landscape of immune mediated disorders

Main Research

The University of Oxford has entered into a strategic collaboration with Janssen Biotech, Inc., one of the Janssen Pharmaceutical Companies of Johnson & Johnson.

Versus Arthritis Foundation Fellowship awarded to Dr Kristina Zec

Awards Main

Dr Kristina Zec has been awarded a Versus Arthritis Foundation Fellowship to investigate the role of products of lipid oxidation produced by synovial macrophages in triggering articular inflammation.

Study reveals the safety of bisphosphonates in chronic kidney disease

Main

The results of an observational study published in JMBR and funded by the Health Technology Assessment Programme shows that bisphosphonate use is associated with a greater risk of chronic kidney disease progression.

WHiTE Four trial results published

Hip Main OCTRU Orthopaedics and trauma Research

The results of the WHiTE Four clinical trial for the treatment of fragility hip fractures have been published in The Bone and Joint Journal.

Vascular loss shown to be the primary hallmark of aging

Kennedy Main Tissue remodelling and regeneration

New Research from the Kusumbe group at the Kennedy Institute of Rheumatology identifies vascular attrition, marked by pericyte to fibroblast differentiation, as a primary hallmark of aging and highlights organ-specific vascular changes with age.

Understanding the first wave of COVID-19 and implications for tackling the ongoing pandemic: evidence from 5.5 million people from Catalonia, Spain

Botnar Main Research Statistics and epidemiology

Health outcomes during the first wave of COVID-19 in Catalonia, Spain, have been described in detail in a study published by Nature Communications.