Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

New research published in Cell Reports by the Dustin Group has discovered a new way for immune cells to relay information about infection or genetic mutations through dynamic, yet durable cell contacts before deciding how to respond.

Time lapse shown as a montage (time increasing from left to right & then through rows with interval of 2.5 minutes), of a human T cell engaging with a printed spot displaying messenger-associated signal. The cell moves around continuously but always pinned down, thus ensuring durable and continuous interaction. Note: raw images have been superimposed and smoothed for illustration.

T cells in the immune system need to have information about infection or mutation (such as cancer) presented to them through physical contact with messenger cells, including dendritic cells. These physical conversations must go on for hours to reach a conclusion – an appropriate, or sometimes pathological, immune response.  

The paradigm for this communication is a prolonged one-to-one interaction referred to as an immunological synapse after the stable communication platform also used in the nervous system.  

The new research revealed that the majority of human T cells intrinsically use a more flexible mode of interaction with messenger cells. In which, the T cells not only keep a “foot” on one messenger with interesting information to share, but continually pivot and probe for contacts with other potential messengers that may reinforce the same message or add new information, opening the possibility of local networking to make a decision.  

Importantly, this flexibility to gather information from multiple messengers in no way impairs the ability of the T cell to stay in contact with the first messenger cell, if no other messengers come within reach of the pivoting T cell. The researchers expect that the ability of T cells to listen to one messenger or incorporate information from dozens of messengers (if available) leads to high sensitivity and robust decision making.  

This discovery was enabled by developing a model system in which the messenger cells were replaced by similar sized, printed spots of key messenger associated proteins on a surface that live human T cells explored in a lab setting while being observed with a microscope.  Quantitative observations of these in lab explorations, correlated with historical data from observations in live tissues, provided insights into events that take place in the more difficult to access tissue spaces in the human body.

Commenting on the research, Professor Michael Dustin said:

“We are very excited about this research. It is the first analysis of how different human T cells subsets behave when presented with their natural targets. It also develops a new analysis for identifying cells that are forming stable or motile junctions when faced with these signals. It is the first new approach to this problem in 15 years.”

You can read more about this research in Cell Reports:

Similar stories

Emergency departments to use the FORCE pathway for wrist fractures in children

New research from the University of Oxford has shown that doctors can simplify treatment for the most common fracture in children, reducing NHS costs.

Kennedy researchers awarded funding to improve the understanding of inflammatory bowel diseases

A new £1.5M grant from the Medical Research Council (MRC) to the Powrie Group at the Kennedy Institute will help define different pathotypes of inflammatory bowel diseases that could lead to better and more focused treatments for patients.

Yoshi Itoh wins the International Dupuytren Award 2022

Yoshi Itoh, Associate Professor and Principal Investigator Cell Migration Group at the Kennedy Institute has been awarded the International Dupuytren Award 2022.

Taking a break from immune-suppressing medicines doubles the antibody response to COVID-19 booster vaccination

The Oxford Clinical Trials Research Unit (OCTRU) at NDORMS played a key role in the VROOM study which found that pausing immune-suppressing medicines such as methotrexate can increase the response to COVID-19 booster jabs.

Ten Years of Athena Swan in the Medical Sciences Division

2022 marks ten years since the first Athena Swan Bronze applications from the Medical Sciences Division. Ten years later, and all 16 departments in the Division have achieved a Silver Award. We look at NDORMS’ Athena Swan journey.

NDORMS researchers awarded Associate Professor title

The University of Oxford has awarded the title of Associate Professor to Adam Cribbs and Luke Jostins.