Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

NDORMS researchers identify a subset of immune cells that could be a new therapeutic target to treat inflamed blood vessels in Giant Cell Arteritis (GCA) and other forms of inflammatory vascular disease.

Blood cells

The research, led by Prof Irina Udalova (Kennedy Institute) in collaboration with Prof Raashid Luqmani (Botnar Research Centre) and published in JCI Insight, identified an immature population of neutrophils that accumulates in the blood of GCA patients and attaches to the arterial vessel wall. The researchers found that reactive oxygen species (ROS) released by these neutrophils trigger changes in blood vessel cells, which could represent an early event in the development of inflammatory lesions.

GCA is one of a group of systemic vasculitides that causes inflammation in the large vessels in the head and neck. It is becoming increasingly common in an ageing population and can lead to significant health problems if untreated, including loss of sight.

To understand more about the cause of GCA, Irina's team analysed individual white blood cells in blood samples from GCA patients. They discovered that the main expansion in cell populations in active GCA was in neutrophils. Dr Lihui Wang, the first author on the paper says: "These cells are normally meant to fight microbes. But to do so they produce reactive oxygen species, among other mediators, which could be pathogenic in prolonged inflammatory conditions. Fully mature neutrophils quickly die, but immature neutrophils that in health are confounded to the bone marrow, live for much longer."

Irina continues, "We were excited to see this population of cells expanded in GCA, infiltrated blood vessels and produced large quantities of ROS. It damaged endothelial barrier and led to endothelial leakage. The same immature neutrophils have recently been linked to severe COVID-19, but the mechanisms are unknown. Thus, our discovery may shed light on the vascular pathology observed in COVID-19 as well."

The research was funded by Versus Arthritis and Oxford-Celgene fellowship programme and the Wellcome Trust.

Funded by

Versus Arthritis logo

Wellcome Trust

Similar stories

Professor Chris Buckley has joined the Kennedy Institute as Director of Clinical Research

Moving to the University of Oxford with the Arthritis Therapy Acceleration Programme (A-TAP) will help accelerate the discovery of new treatments for inflammatory diseases.

Behind enemy lines: research finds a new ally in the fight against cardiovascular disease hidden within the vessel wall itself

A new study reveals the existence of a powerful ally in the fight against cardiovascular disease, a protective subset of vascular macrophages expressing the C-type lectin receptor CLEC4A2, a molecule which fosters “good” macrophage behaviour within the vessel wall.

More effective treatment found for patients hospitalised with COVID-19 pneumonia

A proof-of-concept trial involving Oxford researchers has identified a drug that may benefit some patients hospitalised with COVID-19 pneumonia.

NDORMS researchers honoured in the Recognition Of Distinction Scheme 2021

Sally Hopewell and John Christianson have been awarded the title of ‘Full Professor’ in the University of Oxford’s Recognition Of Distinction Scheme 2021.

New Oxford-Zeiss Centre of Excellence opens at the University of Oxford

The Kennedy Institute for Rheumatology and the Institute of Developmental and Regenerative Medicine announce the launch of the Oxford-Zeiss Centre of Excellence, providing state-of-the-art imaging technologies to lead future discoveries in global health and disease.

HOPE-c opens up for recruitment

Researchers in the Centre for OA Pathogenesis Versus Arthritis at the Kennedy Institute of Rheumatology and Imperial College London are looking to recruit adults with painful hand osteoarthritis for an observational study to help uncover why people living with the condition experience different patterns of pain.