Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers publish the first blueprint of transcriptional factors that control neutrophil-driven inflammation in Nature Immunology.

Neutrophil surrounded by blood cells © Shutterstock

Neutrophils are important cells in the immune system, produced in very large numbers in the bone marrow. When in circulation they patrol blood vessels and tissues seeking out sources of disease or damage to regulate inflammatory and immune responses.

Evidence supports the idea that neutrophils are transcriptionally active cells that have the ability to adapt their genome and change the function of the cell en route to tissues. They display different functions such as phagocytosis, generating reactive oxygen species, and producing cytokines in response to inflammation. But the area remains largely unexplored.

Irina Udalova, Professor of Molecular Immunology at the Kennedy Institute for Rheumatology and senior author of a new study published in Nature Immunology said: "We know very little about neutrophil molecular wiring as it's an emerging field of study. So, our question was how the neutrophils change from the point of being developed in the bone marrow, then being released into the blood, and getting into the tissue. We discovered that rather than being static cells, they are remodelling their chromatin during their life cycle and that remodelling is often associated with transcriptional activity."

Having established that neutrophils do change during their transition to the tissue, the team then wanted to understand what transcriptional factors shape the responses.

Dr Tariq Khoyratty, lead author of the study, identified two transition points in neutrophil state, from bone marrow to the blood and from the blood to the tissue, each associated with the involvement of a distinct set of transcriptional factors. The co-lead author, DPhil student Zhichao Ai, then systematically deleted these in a model system of neutrophil development and examined the effect of deletions on neutrophil responses. By validating each factor in various functional assays, and then in in vivo models of inflammation, the team were able to build up the first transcriptional blueprint of neutrophil activity during inflammation.

"This is the first study that gives us a proof of principle that it might be possible to assign specific transcription factors to specific neutrophil states in chronic inflammatory disorders and therefore a step towards developing medical treatments in future. For example, stimulation of neutrophil maturation may be beneficial for post-chemotherapy cancer patients, whereas inhibition of neutrophil activation may help to reduce the inflammatory burden suffered during inflammation-associated diseases," said Irina.

The study was funded by Irina's Wellcome Trust Investigator Award entitled "Molecular control of pathogenic neutrophil responses in inflammation" and involved a collaboration with Andres Hidalgo's group at the Centro Nacional de Investigaciones Cardiovasculares Carlos III in Madrid.

Similar stories

Yoshi Itoh wins the International Dupuytren Award 2022

Yoshi Itoh, Associate Professor and Principal Investigator Cell Migration Group at the Kennedy Institute has been awarded the International Dupuytren Award 2022.

Taking a break from immune-suppressing medicines doubles the antibody response to COVID-19 booster vaccination

The Oxford Clinical Trials Research Unit (OCTRU) at NDORMS played a key role in the VROOM study which found that pausing immune-suppressing medicines such as methotrexate can increase the response to COVID-19 booster jabs.

Ten Years of Athena Swan in the Medical Sciences Division

2022 marks ten years since the first Athena Swan Bronze applications from the Medical Sciences Division. Ten years later, and all 16 departments in the Division have achieved a Silver Award. We look at NDORMS’ Athena Swan journey.

NDORMS researchers awarded Associate Professor title

The University of Oxford has awarded the title of Associate Professor to Adam Cribbs and Luke Jostins.

Oxford's largest ever study into varicose veins shows need for surgery is linked to genetics

A new international study by Oxford researchers published in Nature Communications, establishes for the first time a critical genetic risk score to predict the likelihood of patients suffering with varicose veins to require surgery, as well as pointing the way towards potential new therapies.

Reflecting on the role of Clinical Director of Trauma and Orthopaedics

In 2021 Professor Andrew Price was appointed Clinical Director of Trauma and Orthopaedics at the Oxford University Hospitals NHS Foundation Trust. After 9 months in post, we find out what the challenges are and what he’s been able to bring to the role.