Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new study led by researchers at the Kennedy Institute and published today in Immunity sheds light on the drivers behind Inflammatory bowel disease (IBD) and suggests potential new targets for treatment of the condition.

 

IBD is a long-term disease involving inflammation of the gut and affecting around 260 000 in the UK. The term usually refers to two conditions – ulcerative colitis and Crohn's disease.

The exact causes of IBD are not yet known, but it is widely accepted that a combination of genetic factors and disruptions to the immune system play a central role in the condition.

The Kennedy researchers showed that the production of eosinophils – a type of white blood cell present in the immune system – is higher in colitis, as is the accumulation of substances linked to eosinophils in the inflamed intestine. The team led by Prof Fiona Powrie and Dr Thibault Griseri also found that eosinophils release toxic and inflammatory substances during colitis, highlighting their potential for causing disease.

Whilst eosinophils are commonly associated with beneficial immune responses against parasites they are also linked to harmful allergic responses. Although they are quite abundant in the healthy intestine, their role in the gut immune stability is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown.

Identifying the molecular mechanisms causing IBD is key to developing new treatments for the condition, and in this study Dr Griseri and team were able to identify the inflammatory molecule - the cytokine GM-CSF - as a crucial driver of the pathogenic activity of eosinophils in colitis.

"We are enthusiastic about these data as we think that together with our former study revealing a key role for GM-CSF in dysregulated white blood cell production in the bone marrow during colitis, our study highlights GM-CSF as a key driver of chronic inflammation and a potential novel therapeutic target in IBD", says Dr Thibault Griseri.

Read full paper at Immunity.

 

Image: Microscopic view of eosinophil granulocyte, component of the white blood cells or leukocytes of the immune system having cytoplasmic granules, showing the lobed nucleus; Somersault1824/Shutterstock.com.

Similar stories

Neutrophil molecular wiring revealed: transcriptional blueprint of short-lived cells

Researchers publish the first blueprint of transcriptional factors that control neutrophil-driven inflammation in Nature Immunology.

NDORMS joins research partnership to understand links between overlapping long-term conditions

The links between different long-term health conditions will be explored in new research funded with a £2.5million grant from the Medical Research Council.

New therapeutic targets identified in the treatment of psoriatic arthritis

Researchers identify two inflammatory-driving proteins, osteopontin and CCL2, highly expressed in psoriatic arthritis joints.

Researchers show the role of cilia in cartilage health

New research shows that disrupting primary cilia in juvenile, adolescent and early adulthood in cartilage stops it maturing correctly, making it more prone to thinning and the potential for osteoarthritis (OA) in later life.

New research could improve quality of life for Psoriatic Arthritis patients

Professors Laura Coates and Dani Prieto-Alhambra will take major roles in a new European Commission project to develop innovative personalised treatment options for people affected by psoriatic arthritis.