Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

By studying blood vessels at single cell resolution, Professor Jagdeep Nanchahal and colleagues found that in Dupuytren’s disease, a fibrotic disorder of the hand, the vasculature is key to orchestrating the development of human fibrosis.

Blood cells

The team has previously shown that development of myofibroblasts, the cells responsible for deposition of the excessive matrix and contraction, is dependent on production of tumour necrosis factor (TNF) by local immune cells. The research, published in PNAS showed that endothelial cells lining the blood vessels modulate the activity of immune regulatory fibroblasts, which secrete mediators that attract the immune cells. They also identified that a potential myofibroblast precursor cell that is contained within a compartment of cells called pericytes that wrap around the blood vessel wall.

First author on the paper, Dr Thomas Layton, who started the work the work as a Kennedy DPhil student at the Kennedy Institute said: "This study illustrates the potential of using state of the art molecular biology techniques to relatively under studied diseases."

Fibrotic diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis and chronic kidney disease, all result from excessive scarring of tissues leading to progressively worsening organ function. Although these diseases have high morbidity and mortality in the Western world, research has been limited by difficulty accessing tissues at the earliest stages of disease. In contrast, in Dupuytren's disease, affected tissues from the palm of the hand are relatively easy to obtain, and can provide clues into fibrotic pathways and possible approaches to slow down or halt disease.

"Animal models fail to recapitulate all aspects of human fibrosis," said Professor Nanchahal. "The pathways we identified using tissue from patients with Dupuytren's disease also appear to pertain to other human fibrotic diseases, such as idiopathic pulmonary fibrosis."

The work was supported by an Oxford-BMS/Celgene fellowship, Royal College of Surgeons of England and British Society for Surgery of the Hand.

Similar stories

Yoshi Itoh wins the International Dupuytren Award 2022

Yoshi Itoh, Associate Professor and Principal Investigator Cell Migration Group at the Kennedy Institute has been awarded the International Dupuytren Award 2022.

Taking a break from immune-suppressing medicines doubles the antibody response to COVID-19 booster vaccination

The Oxford Clinical Trials Research Unit (OCTRU) at NDORMS played a key role in the VROOM study which found that pausing immune-suppressing medicines such as methotrexate can increase the response to COVID-19 booster jabs.

Ten Years of Athena Swan in the Medical Sciences Division

2022 marks ten years since the first Athena Swan Bronze applications from the Medical Sciences Division. Ten years later, and all 16 departments in the Division have achieved a Silver Award. We look at NDORMS’ Athena Swan journey.

NDORMS researchers awarded Associate Professor title

The University of Oxford has awarded the title of Associate Professor to Adam Cribbs and Luke Jostins.

Oxford's largest ever study into varicose veins shows need for surgery is linked to genetics

A new international study by Oxford researchers published in Nature Communications, establishes for the first time a critical genetic risk score to predict the likelihood of patients suffering with varicose veins to require surgery, as well as pointing the way towards potential new therapies.

Reflecting on the role of Clinical Director of Trauma and Orthopaedics

In 2021 Professor Andrew Price was appointed Clinical Director of Trauma and Orthopaedics at the Oxford University Hospitals NHS Foundation Trust. After 9 months in post, we find out what the challenges are and what he’s been able to bring to the role.