Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Researchers at the Kennedy Institute demonstrate that the drug decitabine can boost regulatory T cell responses.

T cell © Shutterstock

A study by Dr I-Shu Huang and colleagues in Professor Richard Williams’s Group published in PNAS shows that decitabine, a drug currently approved for treatment of cancer patients, can boost regulatory T cells in animal models. As robust regulatory T cells have the capacity to suppress immune-driven inflammation, the findings offer a treatment pathway for chronic inflammatory diseases like rheumatoid arthritis (RA). 

Richard said: “RA is characterised by a deficit in fully functional regulatory T cells. But there is evidence that DNA-methylation inhibitors, used for treatment of cancer, increase regulatory T cell responses in patients. This led us to question whether short-term treatment of autoimmune arthritis with DNA methylation inhibitors could restore numbers of regulatory T cells, leading to long-term suppression of disease."  

Of three DNA methylation inhibitors tested in an animal model of rheumatoid arthritis, decitabine was the most effective, producing a sustained therapeutic effect. The researchers observed a profound and rapid decrease in numbers of pathogenic Th1 and Th17 cells in decitabine treated mice and an increase in numbers of regulatory T cells, particularly in the inflamed joint. 

“This study identifies a path toward resetting tolerance in autoimmune disease using a repurposed drug,” said Richard. “However, decitabine acts in a non-specific way and therefore is likely to have many off-target effects when used in a chronic disease like rheumatoid arthritis. Further research would aim to identify more selective epigenetic drugs to restore immune homeostasis.” 

Similar stories

New guidelines to improve reporting standards of studies that investigate causal mechanisms

Researchers at NDORMS have developed a new set of guidelines for reporting mediation analyses in health research.

New Associate Professors announced at NDORMS

The Medical Sciences Division has awarded the title of Associate Professor to five senior researchers at NDORMS.

COVID-19 vaccines shown to reduce infection by 90% in nursing homes

A new collaborative study between the Catalan Institute of Health, the Public Health Secreatariat of Catalonia, and the Centre for Statistics in Medicine, NDORMS, at the University of Oxford have confirmed that COVID-19 vaccines greatly reduce infections, hospitalisations and mortality for up to 6 months.

The Kennedy Institute completes its roof extension

Building work at the Kennedy Institute of Rheumatology has finished, providing a new third floor that houses additional meeting and collaboration space for data science and offices for the management of clinical trials.

Unlocking the secrets of the microbiome

Jethro Johnson, Deputy Director of the Oxford Centre for Microbiome Research explains how the centre is building a research community to understand the microbiome and harness its power to promote health and prevent disease.

Into the future: watching biology unfold

As part of the University of Oxford’s mission to provide its researchers with the newest state-of-the-art optical imaging equipment and as part of a strategic partnership with the Kennedy Institute of Rheumatology (KIR), the Institute of Developmental and Regenerative Medicine (IDRM), and Carl Zeiss AG (ZEISS), ZEISS has installed a ZEISS Lattice Lightsheet 7 microscope at the KIR.