Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Oxford researchers have used advanced microscopy techniques to measure previously unseen forces generated by cells during an immune response; a breakthrough for mechanobiology and future advances in health and disease.

Images from 2D TIRF-SIM-TFM and aTFM microscopic methodologies.
Images from 2D TIRF-SIM-TFM and aTFM microscopic methodologies.

Two recent publications from the Biophysical Immunology Lab, led by Prof Fritzsche at the Rosalind Franklin Institute and Kennedy Institute of Rheumatology at the University of Oxford, have established novel methodologies to measure the small forces occurring in immune cells during an immune response.

The work, led by Dr. Huw Colin-York and Liliana Barbieri in Prof Marco Fritzsche's group, develops and applies new force probing methodologies by combining traction force microscopy and the unique TIRF-SIM technology established between the Fritzsche and Dustin groups in close collaboration with Prof Dong Li (Institute of Biophysics at the Chinese Academy of Science) and Prof Eric Betzig (HHMI Janelia, Noble Laureate in chemistry 2014) at the Kennedy. 

Quantifying small, rapidly evolving forces generated by cells of the immune system is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. The establishment of the two force probing methods allows for measurement of small forces on the pico-Newton range at unprecedented sensitivity in 2D and 3D.

Prof Fritzsche says: "These methods offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology of the immune response to analysis."

The study was carried out in close collaboration with Prof Dustin at the Kennedy Institute and Prof Emad Moendarbary's group at UCL and was published in two papers in Nature Communications earlier this month.

Li D*, Colin-York H*, Barbieri L*, Javanmardi Y, Guo T, Korobchevskaya K, Moendarbary E, Li D, Fritzsche M, Astigmatic Traction force microscopy (aTFM), Nature Communications, 2021 (*co-first authors). 

Barbieri L*, Colin-York H*, Korobchevskaya K*, Li D, Karedla N, Schneider F, Dustin M, Li D, Fritzsche M, Two-dimensional TIRF-SIM Traction Force Microscopy (2D TIRF-SIM-TFM), Nature Communications, 2021 (*co-first authors). 

Korobchevskaya K, Colin-York H, Barbieri L, Fritzsche M, Extended mechanical force measurements using structured illumination microscopyPhilosophical Transactions Royal Society A, 2021. 

Find out more about the microscope technology

Similar stories

Patient and public involvement in Rheumatology research – embracing the wave of change

On launching the new OPEN ARMS PPI group in Oxford, Dr. Laura Coates explored the patient and public involvement (PPI) models of three academic centres in the UK to show how it benefits researchers, clinicians, and patients alike.

Neutrophil molecular wiring revealed: transcriptional blueprint of short-lived cells

Researchers publish the first blueprint of transcriptional factors that control neutrophil-driven inflammation in Nature Immunology.

NDORMS joins research partnership to understand links between overlapping long-term conditions

The links between different long-term health conditions will be explored in new research funded with a £2.5million grant from the Medical Research Council.

NDORMS researchers awarded grant for study on the effects of COVID-19 vaccines on long COVID

A team of NDORMS researchers including Doctor Annika Jödicke and Doctor Victoria Strauss have been awarded NIHR funding to carry out a study into the effects of different COVID-19 vaccines on long COVID.

New therapeutic targets identified in the treatment of psoriatic arthritis

Researchers identify two inflammatory-driving proteins, osteopontin and CCL2, highly expressed in psoriatic arthritis joints.

Researchers show the role of cilia in cartilage health

New research shows that disrupting primary cilia in juvenile, adolescent and early adulthood in cartilage stops it maturing correctly, making it more prone to thinning and the potential for osteoarthritis (OA) in later life.